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Executive Summary: 
 Versatile surface and interface tailoring has been realized through molecular monolayers, 
polymer nanolayers or peptide monolayers. Insulating and semiconducting molecular phosphonic 
acid (PA) self-assembled monolayers (SAMs) have been developed for applications in organic 
field-effect transistors (OFETs) for low-power, low-cost flexible electronics. Multifunctional 
SAMs on ultrathin metal oxides, such as hafnium oxide and aluminum oxide, are shown to 
enable (1) low-voltage (sub 2V) OFETs through dielectric and interface engineering on rigid and 
plastic substrates, (2) simultaneous one-component modification of source/drain and dielectric 
surfaces in bottom-conatct OFETs, and (3) SAM-FETs based on molecular monolayer 
semiconductors. The combination of excelent dielectric and interfacial properties results in high-
performance OFETs with low-subthreshold slopes down to 75 mV/dec, high Ion/Ioff ratios of 105-
107, contact resistance down to 700 Ω cm, charge carrier mobilities of 0.1-4.6 cm2/(V s), and 
general applicability to solution-processed and vacuum-deposited n-type and p-type organic and 
polymer semiconductors. (4) Polystyrene (PS) nanolayer as interface for OFETs, (5) threshold 
voltage control in OFETs with dielectric layer modified by the genetically engineered 
polypeptide (GEP) and (6) graphene oxide (GO) nanosheet-based OFETs and one diode-one 
resistor cell arrays for non-volatile memory have been also achieved. (7) Exquisite control of 
molecules is reached by monolayer assembly/confinement, and monitored by photon-STM for 
molecular motions, reactions and conductance in ground state and excited state.  
 
1. SAM dielectric and interface engineering on rigid and plastic substrates 
 
  To produce low-voltage operating OFETs, there have been numerous attempts to develop 
gate dielectrics with increased capacitance density (Ci); this has been accomplished by either 
decreasing the thickness (d) or increasing the dielectric constant (k) (Ci=ε0k/d). Common 
dielectric materials for low-voltage devices include ultrathin or high-k polymer films, 
polyelectrolytes, inorganic oxides, and hybrid organic/inorganic dielectrics. Molecular self-
assembled monolayers and multilayers have also been proven to be excellent candidates for gate 
dielectrics in low-voltage OTFTs. SAM dielectrics are composed of densely packed organic 
molecular monolayers that suppress carrier tunneling via highly ordered aliphatic chains even 
though they are only a few nanometer in thickness. In addition, by tuning the surface terminal 
group of the SAM, it is possible to modify the interface between the organic semiconductor and 
dielectric by exploiting compatible organic/organic interactions resulting in improved device 
performance. In the past few years, we have developed π-σ-PA SAMs on metal oxides such as 
HfOx and AlOx with the combination of excellent dielectric and interfacial properties to enable 



low-voltage (sub 2V) high-performance OFETs based on solution-processed and vacuum-
deposited n-type and p-type organic and polymer semiconductors (Fig. 1). Despite Al or Si gate 
electrode used in our work, these SAM/metal oxide hybrid dielectrics are compatible with other 
metal gate electrodes even printed ones and top-gate device architectures.  
  Ultrathin (<10 nm) hybrids of PA SAMs and metal oxides such as hafnium oxide and 
aluminum oxide have exhibited the combination of excellent dielectric and interfacial properties 
for low-voltage (sub 2V) high-performance OTFTs on rigid and flexible substrates. For 
pentacene OFETs on alkylphosphonic acid (σ-PA)-modified HfO2 dielectrics, high saturation 
field effect mobilities result at a balance between disordered SAMs to promote large pentacene 
grains and thick SAMs to aid in physically buffering the charge carriers in pentacene from the 
adverse effects of the underlying high-k oxide. Compared to methyl-terminated σ-PA SAM/HfO2 
(AlOx) hybrid dielectrics, aryl-terminated π-σ-PA SAM/ HfO2 (AlOx) ones show improved 
dielectric properties such as leakage current density (down to 6x10-9 A/cm2 at 1.5 V) and 
capacitance density (up to 0.76 µF/cm2), and enhanced pentacene OFET device performance 
such as higher charge carrier mobility, current on/off ratio, and lower threshold voltage and 
subthreshold slope. This is due to more suppressing of carrier tunneling via ordered and longer 
molecular SAMs, better capacitive coupling of more polarizable aryl terminal group, and 
chemically and electrically more compatibility of π-σ-PA SAMs and organic semiconductors 
compared to σ-PA SAMs. The dielectric system of π-σ-PA SAM on low-temperature (<200 oC) 
processed HfOx allow the fabrication of low-voltage TIPS-Pen and polymer OTFTs on flexible 
substrates, which represents a major advancement towards developing solution processed, low-
power and flexible organic electronic devices. An all-additive patterning approach for 
SAM/AlOx hybrid dielectrics on Si substrates has been established to provide exceptional 
dielectric properties and compatible surface energy for subsequent patterning of solution 
processed n-channel and p-channel low-voltage OTFTs. These results provide a potential route 
for processing high-throughput, patterned, solution processed OTFTs for low-power electronic 
applications. Future design and synthesis of novel π-σ-PA SAMs on ultrathin metal oxides will 
allow interfacial interaction-induced optimization of orientation, packing and morphology of 
organic semiconductors towards low-voltage OTFTs with much enhanced device performance 
such as charge carrier mobility. 
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Fig. 1 (a) Schematic of SAM/metal oxide hybrids as ultrathin dielectrics and interface for low-
voltage OFETs. (b) Typical π-σ-PA SAM on metal oxides with optimized dielectric and 
interfacial properties. 
 
2. Simultaneous one-component SAM modification of source/drain and dielectric surfaces in 
bottom-conatct OFETs 
 
  Approaches using SAMs to modify the electrodes in bottom-contact OTFTs are 
technologically important because bottom-contact devices are easily scalable by 
photolithography or printing which makes it a leading candidate for large-scale manufacturing. 
For tuning the metal/organic interface, SAMs with thiol as the binding group have been used to 
1) tune the work function of the metal to match the energy level of organic semiconductor (OSC) 
to achieve Ohmic contact, 2) improve the order of the OSC by selective chemical SAM/OSC 
interactions, and/or 3) lower the surface energy of the metal surface. For the OSC/dielectric 
interface, SAMs with a wide range of binding groups (silanes, phosphonic acids, carboxylic 
acids, etc.) have been employed to control device performance. This has been achieved by, 1) 
passivating trap sites at the dielectric surface (e.g., -OH groups, and/or dielectric ionic 
polarization), 2) improving the order and/or charge accumulation in the OSC through chemical 
SAM/OSC interactions, and/or 3) matching the surface energy between the dielectric surface and 
the OSC. However, the commonly used methods for modifying bottom-contact electrode and 
dielectric surfaces in OTFTs have relied upon different processes with materials sometimes 
incompatible with each other. In addition, typical processing routes for high-quality SAM 
modification of metal electrode or dielectric surfaces require multiple steps and/or time 
consuming processing conditions (~10-48 h) from a combination of solution phase assembly, 
and extensive post processing (such as heating or vapor annealing). Therefore, it is imperative to 
develop a simplified method that can modify both bottom-contact electrode and dielectric 
surfaces simultaneously while maintaining desirable interfacial properties for high-performance 
OTFTs. 
  We have developed a simple and efficient process to simultaneously modify the 
OSC/bottom-contact electrode and OSC/dielectric interfaces with a single-component molecular 
SAM for bottom-contact OTFTs (Fig. 2). Using spin-coated OPA on Ag bottom-contact 
electrodes and ultra-thin HfO2 dielectric, C60 and pentacene based OTFTs can operate under 3 V 
with low contact resistance (down to 700 Ohm cm), low subthreshold swing (down to 75 
mV/dec), high on-off current ratios of 107, and charge carrier mobilities as high as 4.6 and 0.8 
cm2/(V s) for C60 and pentacene, respectively. Rational selection of the alkyl chain length of the 
SAM leads to optimized OTFT performance through a balanced combination of low-contact 
resistance at the bottom-contact electrodes and excellent interface properties for compact OSC 
grain growth. Future development of new π-σ-PA SAMs will allow simultaneous single-
component modification of source/drain and dielectric surfaces to realize low-voltage high-
peformance bottom-conatct OTFTs based on solution processed organic semiconductors. 
 
 
 
 
 



Fig. 2 Schematic of bottom-contact OTFTs using single-component spin-cast SAMs to 
simultaneous modify metal contacts and dielectric surfaces. Chemical structures of molecules 
used for SAMs in this study: n-octylphosphonic acid (OPA), n-dodecylphosphonic acid (DDPA), 
n-octadecylphosphonic acid (ODPA). 
 

3. SAM-FETs based on molecular monolayer semiconductors 
   
  As it has been demonstrated that charge transport in OFETs primarily occurs in the first 
few nanometers of the semiconductor channel closest to the dielectric interface, therefore, 
devices utilizing a single molecular layer of semiconductor for charge transport are attainable. It 
has been recently realized that a molecular monolayer of organic semiconductor is sufficient to 
function as an ideal channel of an OFET with charge carrier mobility of up to 1 cm2/(V s). This 
has inspired the development of π-conjugated semiconducting SAM molecules for fabricating 
self-assembled monolayer field effect transistor (SAM-FET). Functionally, SAM-FETs are 
OFETs in which the organic semiconductor is a single layer of well-packed π-conjugated 
molecules capable of acting as a charge-transporting channel. Recently, SAM-FETs with long 
channel lengths of up to 40 µm have been demonstrated, in which a SAM of oligothiophene was 
formed on a SiO2 or polymeric gate dielectric via a greater than 15 h of immersion assembly. 
Due to long-range intermolecular π-π coupling in the monolayer, performance of these SAM-
FETs was comparable to that of OFETs constructed with a thin bulk film. However, for all the 
SAM-FETs fabricated so far, most devices required channel lengths of submicrometer to ensure 
a gate voltage modulation of the source-to-drain channel current. This is because it is difficult to 
achieve fast charge transport due to defects and poor π-π coupling between molecules in such 
long channels. 
  We have recently demonstrated rapidly processed SAM-FETs achieved through spin-
coating a phosphonic acid-based molecule 11-(5''''-butyl-
[2,2';5',2'';5'',2''';5''',2'''']quinquethiophen-5-yl)undecylphosphonic acid (BQT-PA) (Fig. 3). The 
resulting spin-cast SAMs show uniform density, and well-ordered monolayer coverage 
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comparable to that observed by conventional immersion phase solution assembly. The top-
contact SAM-FETs processed by spin-coating and immersion assembly show identical electronic 
performance. These devices were found to have an average µ of 1.1 - 8.0 x 10-6 cm2/(V s) for a 
wide range of channel lengths (device channel lengths measured were 12, 20, 30, 50 and 80 µm). 
On/off curren ratio (Ion/Ioff) for most devices was on the order of 102.   
 Complementary to OTFTs, SAM-FETs are versatile and promising because layers of 
dielectrics, semiconductors, and electrode contact can be tailored in a molecular level to combine 
ultrathin monolayer-metal oxide hybrid dielectrics, monolayer semiconductor with controlled 
molecular orientation and packing, and chemically bonded electrode contact in a single system. 
The strategy to self-assemble multifunctional molecules with semiconducting, dielectric and 
surface-binding moieties onto ultrathin metal oxides such as AlOx and HfOx is highly attractive 
because it can enhance the understanding of the dependence of charge mobility on molecular 
structure, orientation, and packing. This will help advance OFET technology and realize its full 
potential for low power consumption, versatile bottom-up processing, and ultimate 
miniaturization. 
 

 
Fig. 3 (a) SAM-FET device architecture (cartoon). From bottom: P-doped Si with 300 nm oxide, 
2 nm adhesion layer, BQT-PA, gold electrodes. (b) Chemical structure of BQT-PA. 
 
4. Polystyrene (PS) nanolayer as interface 
 



The PS films were inserted between SiO2 and organic semiconductors as buffer layers for 
OFETs. The results showed that a flat orientation of phenyl ring at the surface of the PS films 
optimized the surface energy of PS film, resulting in higher crystallinity of pentacene films 
deposited onto it and an improved interconnection between the pentacene crystalline domains. 
The device with the PS film thermally treated at 120 °C showed superior performance, affording 
a mobility as high as 4 cm2/V s, an on/off ratio of about 107-108 and a threshold voltage of about 
6.5 V in the saturation region. 

Low-voltage pentacene-based OFETs were also demonstrated with PS/HfOx hybrid 
dielectrics. Thermal annealing the PS at 120 °C readily improves the quality of the hybrid 
dielectric surface by inducing flatter phenyl group orientation and better matched surface energy 
with pentacene compared to untreated PS. Pentacene deposited on PS-120 display higher quality 
thin films with larger grain sizes and higher crystallinity. Pentacene OFETs with PS-120/HfOx 
hybrid dielectrics can operate at low-voltage (< 3 V) with high field-effect mobilities (1 cm2/V 
s), high on/off current ratios (106), and low subthreshold slopes (100 mV/dec). 

 
5. Threshold voltage control in OFETs with dielectric layer modified by the genetically 
engineered polypeptide (GEP). 
 

Important device parameters for OFETs include driving voltage, stability, on/off current 
ratio, charge carrier mobility, and threshold voltage (VT). Controlling VT can yield higher circuit 
performance and lower power consumption in electronics. It can be shifted by modifying the 
dielectric with self assembled monolayers (SAMs) to shift VT by tens of volts.    

We have achieved precise control over the threshold voltage of pentacene-based organic 
thin-film transistors by inserting a genetically engineered quartz-binding polypeptide at the 
semiconductor-dielectric interface. A 30-V range was accessed with the same peptide by 
adjusting the pH of the solution for peptide assembly while leaving other device properties 
unaffected. Mobility of 0.1-0.2 cm2 V-1 s-1 and on/off current ratio of >106 could be achieved for 
all devices regardless of the presence of the neutral peptide or the peptide assembled in acidic or 
basic conditions. This shift of threshold voltages is explained by the generation of charged 
species and dipoles due to variation in assembling conditions. Controlling device characteristics 
such as threshold voltage is essential for integration of transistors into electronic circuits. 
 
6. Graphene oxide (GO) nanosheet-based OFETs and one diode-one resistor cell arrays for 
non-volatile memory 
 

We have demonstrated ONVMTs using chemically synthesized and spin-coated GO 
nanosheets as the charge-trapping layer. Based on the applied gate bias, the transfer curve 
characteristics showed positive or negative threshold voltage shifts, indicating charge trapping or 
detrapping in GO nanosheets. It exhibited more than two orders of ON/OFF ratio for 104 s. 
Although the memory performance needs to be further improved, GO based ONVMTs may be 
promising for the next generation of non-volatile memory applications. 

We have also introduced photolithographically patterned organic resistor and diode 
materials, and successfully fabricated and tested the performance of a prototype organic 
photopatterned 4 x 4 1D–1R cell array. Photopatterning of the resistor layer does not affect the 
cell operation (e.g. sweep endurance and retention properties) compared to the previously 
reported device performance. In addition, after the integration of photopatterned organic schottky 



diodes on top of the photopatterned 1R cells, the 1D–1R cell exhibited improved reading 
accessibility and memory properties, while eliminating cross-talk with neighbouring cells. These 
results demonstrate the feasibility of fabricating high-density, active-type, all-organic memory 
1D–1R cell arrays and generating organic electronic devices with sophisticated architectures. 
 
7. STM investigation of photoactive SAMs with confined environment and controlled 
orientation under light irradiation 
 
 Exquisite control of molecules is reached by monolayer assembly/confinement, and 
monitored by photon-STM for molecular motions, reactions and conductance in ground state and 
excited state. Three distinct phenomena on anthracene-terminated phenylethynyl thiolates 
molecules on Au{111} were observed including stochastic switching, increased conductance for 
molecules in excited states, and drops in conductance attributed to photochemical reactions. 
Exercising control over molecular reactivity by confinement and STM monitoring molecular 
motions and reactions have great potential for both understanding and measuring complex 
chemical reactions. Fundamental understanding of molecules in ground state, excited state, light 
absorption, charge separation, charge generation and charge transport on surface is crucial for 
organic electronics, including organic transistors, solar cells and light-emitting diodes. 
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